Search results

Search for "external quantum efficiency (EQE)" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • the light-trapping effect. The impact of light-trapping on the operation of solar cells is presented by means of current–voltage curves. In contrast, sample B showed a flat surface morphology. The average RMS roughness value was 9 nm. Therefore, interference peaks in external quantum efficiency (EQE
PDF
Album
Full Research Paper
Published 21 Jul 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • /interface needs to be properly prepared. In the experiments described here we examined eight different paths of GaAs surface treatment (cleaning, etching, passivation) which resulted in different external quantum efficiency (EQE) values of the tested photovoltaic (PV) cells. Atomic force microscopy (AFM
  • improves optical and electrical properties of gallium arsenide-based devices [31][32][33]. In this work we examine the influence of the surface treatment of GaAs (cleaning, etching, and passivation) on the external quantum efficiency (EQE) results of the AZO/Al2O3/p-GaAs PV structures (in which AZO stands
PDF
Album
Full Research Paper
Published 28 Jun 2021

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • resistivity (ρ) of 100–150 nm thick Sb2S3 films on glass/TiO2 substrate was measured by the collinear four-wire technique and by van der Pauw measurements to be in the range of 2–3 × 106 Ω cm, as anticipated. Figure 3b shows the external quantum efficiency (EQE) of solar cells with 70, 100 and 150 nm thick
  • source meter. The light intensity was regulated for the light intensity dependence measurements using gray filters (metal meshes with varied hole size). The external quantum efficiency (EQE) spectra were measured using a monochromatized light source (Newport 300 W Xenon lamp, 69911 with a monochromator
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • UV–vis light absorption measurements were performed by using a spectrophotometer (Shimadzu UV-3101 PC). The external quantum efficiency (EQE) measurements were obtained on a Keithley 2000 multimeter as a function of the wavelength from 350 to 800 nm on the basis of a Spectral Products DK240
  • precursor solution is found to be effective in increasing the Voc. The short-circuit photocurrent density (Jsc) exhibits no significant difference, which has also been manifested by measuring the external quantum efficiency (EQE) of the two samples over the entire wavelength range from 350 to 800 nm (Figure
PDF
Album
Full Research Paper
Published 05 Dec 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • OPV sets were fabricated and tested, and the results followed the same trend. Figure 6a shows the best values measured. The external quantum efficiency (EQE) plots of the OPVs are shown in Figure 6b. The EQE curves indicate that the photocurrent is generated mainly in the 400–750 nm range, in
  • reference cell. Current density versus voltage (J–V) curves were measured using a Keithley 2450 source meter under ambient conditions. External quantum efficiency (EQE or IPCE) was measured in a home-built EQE set up [32]. A potentiostat/galvanostat PARTAT 2273 system was used for the IS measurements. The
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble

  • David van Treeck,
  • Johannes Ledig,
  • Gregor Scholz,
  • Jonas Lähnemann,
  • Mattia Musolino,
  • Abbes Tahraoui,
  • Oliver Brandt,
  • Andreas Waag,
  • Henning Riechert and
  • Lutz Geelhaar

Beilstein J. Nanotechnol. 2019, 10, 1177–1187, doi:10.3762/bjnano.10.117

Graphical Abstract
  • possibility to correlate the EL intensity of a single-NW LED with the actual current density in this NW. This way, the external quantum efficiency (EQE) can be investigated as a function of the current in a single-NW LED. The comparison of the EQE characteristic of single NWs and the ensemble device allows
  • employed here a very powerful analysis tool. Keywords: electroluminescence; external quantum efficiency (EQE); nanowire LED; single nanowire; current–voltage; Introduction Group-III nitride nanowire (NW) ensembles have been employed for a wide range of applications, especially optoelectronic devices [1
  • series resistances as well as the threshold voltages of the single NWs. Finally, we analyze the dependence of the external quantum efficiency (EQE) on the current in single-NW LEDs. By comparing the trends for single and ensemble measurements, we estimate the number of active NWs in the ensemble LED
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2019

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • calibrated at Fraunhofer ISE. For external quantum efficiency (EQE) measurements, the setup used in this work was custom-built. It comprises a Newport illuminator/monochromator, a chopper, a substrate holder (with magnetic pads to hold the probes), and a lock-in amplifier. A calibrated monocrystalline
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019

Electrolyte tuning in dye-sensitized solar cells with N-heterocyclic carbene (NHC) iron(II) sensitizers

  • Mariia Karpacheva,
  • Catherine E. Housecroft and
  • Edwin C. Constable

Beilstein J. Nanotechnol. 2018, 9, 3069–3078, doi:10.3762/bjnano.9.285

Graphical Abstract
  • cm−2 for electrolyte E2e (0.01 M MBI). DSCs with these two electrolytes exhibit values of VOC in the range 292–374 mV (Supporting Information File 1, Table S3) and overall photoconversion efficiencies of 0.47–0.57% (or 7.8–9.5% with respect to N719 set to 100%). External quantum efficiency (EQE
PDF
Album
Supp Info
Full Research Paper
Published 21 Dec 2018

Near-infrared light harvesting of upconverting NaYF4:Yb3+/Er3+-based amorphous silicon solar cells investigated by an optical filter

  • Daiming Liu,
  • Qingkang Wang and
  • Qing Wang

Beilstein J. Nanotechnol. 2018, 9, 2788–2793, doi:10.3762/bjnano.9.260

Graphical Abstract
  • point (0.45 V, 12.45 mA). The inset shows a photograph with the active area of ca. 0.84 cm2. The external quantum efficiency (EQE) curve in Figure 3c reveals that almost no photocurrent is generated when the wavelength of light is longer than 800 nm. The transmittance spectrum of a-Si:H solar cell
PDF
Album
Full Research Paper
Published 31 Oct 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • results of the simulations and discuss the potential and suggestions for improvements in external quantum efficiency (EQE) and short-circuit current density, JSC, of the HJ Si solar cell by applying different textures (nano, micro and combined nano + micro) to the solar cell structure. As an extension of
  • carriers from the c-Si wafer and neglected contributions of carriers from thin amorphous layers (replicating state-of-the-art devices). Under this realistic assumption, the A can be assumed to be equal to the external quantum efficiency, EQE, of the device [18]. In this case, the potential JSC of the solar
PDF
Album
Full Research Paper
Published 28 Aug 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • obtained from solar simulator measurements are confirmed by external quantum efficiency (EQE) measurements shown in Figure S4, Supporting Information File 1. The cell from an Sb2S3 layer crystallized at 300 °C shows a lower Voc and Jsc than the cell crystallized at 265 °C. At 350 °C, the Voc drops
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Arvo Mere,
  • Valdek Mikli and
  • Malle Krunks

Beilstein J. Nanotechnol. 2016, 7, 1662–1673, doi:10.3762/bjnano.7.158

Graphical Abstract
  • . External quantum efficiency The external quantum efficiency (EQE) of the glass/ITO/TiO2/Sb2S3/P3HT/Au solar cell is presented in Figure 7. The gain of EQE is almost linear when increasing the number of cycles from three to nine, which could be expected considering a homogeneous decrease of the
  • layers assuming a direct optical transition. The external quantum efficiency (EQE) of the solar cells was measured in the range of 350–1000 nm on a Newport Oriel kit that contains a 300 W Xe lamp, high-resolution monochromator (Cornerstone 260), digital dual-channel lock-in detector (Merlin), and a
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016

Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction

  • Carla Aramo,
  • Antonio Ambrosio,
  • Michelangelo Ambrosio,
  • Maurizio Boscardin,
  • Paola Castrucci,
  • Michele Crivellari,
  • Marco Cilmo,
  • Maurizio De Crescenzi,
  • Francesco De Nicola,
  • Emanuele Fiandrini,
  • Valentina Grossi,
  • Pasqualino Maddalena,
  • Maurizio Passacantando,
  • Sandro Santucci,
  • Manuela Scarselli and
  • Antonio Valentini

Beilstein J. Nanotechnol. 2015, 6, 704–710, doi:10.3762/bjnano.6.71

Graphical Abstract
  • mW of light intensity) for incident light of wavelengths ranging from 378 to 980 nm. When illuminated by the monochromatic intensity of a filtered xenon lamp, the external quantum efficiency (EQE) trend is similar to that of the LED illuminated experiment, as shown in Figure 5d. It should be noted
  • heterojunction. (a) Photocurrent induced by a 730 nm continuous wave, low power light source at various illumination intensities. (b) Photocurrent linearity at a drain voltage 15 V and wavelength of 730 nm. (c) Photocurrent induced at different wavelengths. (d) Comparison between the device external quantum
  • efficiency (EQE) measured with an LD and a xenon lamp, filtered at different wavelengths. (a) Dark current and photocurrent tunneling in a CNT–Si heterojunction under 378 nm light illumination at different intensities. (b) The same as in (a) after subtracting the dark current. (c) The same as in (b) but for
PDF
Album
Full Research Paper
Published 10 Mar 2015

Low-cost plasmonic solar cells prepared by chemical spray pyrolysis

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Valdek Mikli,
  • Arvo Mere,
  • Ilmo Sildos and
  • Malle Krunks

Beilstein J. Nanotechnol. 2014, 5, 2398–2402, doi:10.3762/bjnano.5.249

Graphical Abstract
  • . The external quantum efficiency (EQE) of the solar cells was measured in the range of 300–1000 nm on a Newport Oriel kit that contains a 300 W Xe lamp, high-resolution monochromator (Cornerstone 260), digital dual-channel lock-in detector (Merlin), and a calibrated silicon reference detector. The Xe
  • Discussion A sketch of the solar cell is presented in Figure 1A for the design where the Au-NP layer follows the ITO layer and in Figure 1B for the configuration where the Au-NP layer follows the CuInS2 layer. The corresponding external quantum efficiency (EQE) spectra of the solar cells are presented in
  • extremely thin CuInS2 absorber layer and an ITO substrate. Au-NPs as constituents of the solar cells were produced by spraying chloroauric acid (HAuCl4) onto the ITO or CuInS2 layer. The external quantum efficiency (EQE) of the solar cell decreased due to increased reflection of light due to the Au plasmon
PDF
Album
Letter
Published 12 Dec 2014

Biomolecule-assisted synthesis of carbon nitride and sulfur-doped carbon nitride heterojunction nanosheets: An efficient heterojunction photocatalyst for photoelectrochemical applications

  • Hua Bing Tao,
  • Hong Bin Yang,
  • Jiazang Chen,
  • Jianwei Miao and
  • Bin Liu

Beilstein J. Nanotechnol. 2014, 5, 770–777, doi:10.3762/bjnano.5.89

Graphical Abstract
  • of CN/CNS heterostructure > CN > CNS. The low photocurrent density might be due to the poor contact among CN particles and FTO substrate. Figure 6d shows the external quantum efficiency (EQE) of CN, CNS and the CN/CNS heterostructure, which matches well with the corresponding photocurrent density. It
  • 1.5G filter (Newport, 81094) and a UV-filter (Newport, FSQ-GG420) (cut off: 420 nm). Prior to each measurement, the light intensity was determined by a calibrated silicon photodiode. The external quantum efficiency (EQE) was measured under +0.4 V external bias (three-electrode) condition. The
  • bias vs Ag/AgCl under simulated sunlight (AM 1.5, 100 mW/cm2) and visible light (λ > 420 nm). (d) External quantum efficiency (EQE) of CN, CNS and CN/CNS photoelectrodes. Supporting Information Supporting Information File 50: Additional experimental data. Acknowledgements The authors acknowledge
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2014

Structural, electronic and photovoltaic characterization of multiwalled carbon nanotubes grown directly on stainless steel

  • Luca Camilli,
  • Manuela Scarselli,
  • Silvano Del Gobbo,
  • Paola Castrucci,
  • Eric Gautron and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2012, 3, 360–367, doi:10.3762/bjnano.3.42

Graphical Abstract
  • highly oriented pyrolytic graphite (HOPG). Notably, a broadening of the π-plasmon peak in the case of MWCNTs is evident. In addition, a photocurrent was measured when MWCNTs were airbrushed onto a silicon substrate. External quantum efficiency (EQE) and photocurrent values were reported both in planar
  • geometry gives a photocurrent intensity and an external quantum efficiency (EQE) value much higher than those measured in the in-plane configuration. Results and Discussion In Figure 1 the chemical vapour deposition chamber used to grow the CNTs is displayed. The stainless-steel substrate is mounted on a
  • silicon photodiode and data were collected by a lock-in technique. The external quantum efficiency (EQE) is defined as the fraction of the incident photons, Nph, converted into photocurrent, i.e., the number of the generated electron–hole pairs, Ne–h, multiplied by the electronic charge, e. The number of
PDF
Album
Full Research Paper
Published 02 May 2012
Other Beilstein-Institut Open Science Activities